Block-Cell-Printing for live single-cell printing.
نویسندگان
چکیده
A unique live-cell printing technique, termed "Block-Cell-Printing" (BloC-Printing), allows for convenient, precise, multiplexed, and high-throughput printing of functional single-cell arrays. Adapted from woodblock printing techniques, the approach employs microfluidic arrays of hook-shaped traps to hold cells at designated positions and directly transfer the anchored cells onto various substrates. BloC-Printing has a minimum turnaround time of 0.5 h, a maximum resolution of 5 µm, close to 100% cell viability, the ability to handle multiple cell types, and efficiently construct protrusion-connected single-cell arrays. The approach enables the large-scale formation of heterotypic cell pairs with controlled morphology and allows for material transport through gap junction intercellular communication. When six types of breast cancer cells are allowed to extend membrane protrusions in the BloC-Printing device for 3 h, multiple biophysical characteristics of cells--including the protrusion percentage, extension rate, and cell length--are easily quantified and found to correlate well with their migration levels. In light of this discovery, BloC-Printing may serve as a rapid and high-throughput cell protrusion characterization tool to measure the invasion and migration capability of cancer cells. Furthermore, primary neurons are also compatible with BloC-Printing.
منابع مشابه
Bioprinting in Vascularization Strategies
Three-dimensional (3D) printing technology has revolutionized tissue engineering field because of its excellent potential of accurately positioning cell-laden constructs. One of the main challenges in the formation of functional engineered tissues is the lack of an efficient and extensive network of microvessels to support cell viability. By printing vascular cells and appropriate biomaterials,...
متن کاملBio-printing Damaged Tissues: A Novel Approach in Regenerative Medicine
Regenerative medicine, deals with functional reconstruction of damaged tissues or organs after severe injuries chronic diseases, while body's natural responses are not sufficient. In this field, stem cells due to their exclusive potential in self-renewal and differentiation into other cell types, are the main sources of functional cells in regenerative medicine. However, challenges in stem cell...
متن کاملInk-Jet Printing Cotton with Cationic Reactive Dye Based Inks
The current commercial application of ink-jet reactive inks to cotton fabrics has been through pre-treating with pad liquor prior to printing. In This study made an effort to provide a single phase ink-jet printing process for printing cotton fabric using the novel cationic reactive dye in ink’s formulation. Cotton fabric was printed upon with the novel cationic reactive dye and commercial anio...
متن کاملHighly Elastic Biodegradable Single-Network Hydrogel for Cell Printing
Cell printing is becoming a common technique to fabricate cellularized printed scaffold for biomedical application. There are still significant challenges in soft tissue bioprinting using hydrogels, which requires live cells inside the hydrogels. Moreover, the resilient mechanical properties from hydrogels are also required to mechanically mimic the native soft tissues. Herein, we developed a v...
متن کاملPiezoelectric Inkjet-based Single-cells Printing by Image Processing for High Efficiency and Automatic Cell Printing
Research in cell printing by piezoelectric inkjet printer has been conducted, however, relatively reliable single-cells printing yield had not been obtained. We proposed a different approach to increase the yield in single-cells printing by utilizing piezoelectric driving method not used in recent inkjet printer devices, push-pull method. Furthermore, cell recognition system constructed by imag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 8 شماره
صفحات -
تاریخ انتشار 2014